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Calculations of the onset of flow instability are presented for low speed multistage axial 
compressors operating with asymmetric inlet flow. The most important feature of the 
calculation procedure is the modeling of the fluid dynamic interaction between the spoiled 
and unspoiled sectors of the compressor. The calculations show that annulus averaged 
slope of the compressor pressure rise characteristic equal to zero is a useful approximate 
stability criterion for situations where the dynamics of the compressor flow field do not 
couple strongly to the compression system o r  the structure of the imposed distortion 
is not similar to that of the eigenmodes of the flow in the compressor annulus. This 
approximate criterion is used to investigate the relationship between the present model 
and the "parallel compressor" model. Calculations are also performed for cases of interest 
when compressor and compression system are  closely coupled, as well as situations in which 
the compressor is subjected to a rotating distortion. (This would occur, for example, in a 
two-spool engine with the low compressor in rotating stall.) These first-of-a-kind computations, 
and the accompanying description of the physical mechanisms, show that the stability of the 
flow in the compressor can be adversely affected if the temporal or spatial structure of the 
distortion is such that resonant type responses can be evoked either from the compressor or 
from compressor/compression system interactions. 
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I n t r o d u c t i o n  

The adverse effects on gas turbine engine operation due to inlet 
distortion are well known and need no detailed introduction. 
Because of its consequences, the distortion problem has received 
considerable attention, and a large amount of experimental and 
theoretical work has been conducted on the topic. 

The most critical aspect is assessment of the effect on the 
stability of flow in the compressor due to a given inlet distortion. 
In a previous paper, 1 a new method was presented for computing 
this loss in stability by examining the conditions under which 
small disturbances, which propagate round the annulus, will 
grow. The analysis, which appears to be the first to treat this 
problem from the point of view of a rigorous fluid dynamic 
instability calculation, showed trends in compressor behavior 
in good agreement with existing experimental observations. 

A key feature of the method is the ability to account properly 
for the interaction between the high and low total pressure 
sectors of the compressor. As discussed below, it is this, rather 
than any "critical residence time in the distorted region," that 
is important in determining the stability of the distorted flow. 
To analyze the flow instability that occurs in the presence of this 
interaction, the small perturbations are imposed on a time mean 
flow that is circumferentially strongly nonuniform. The "back- 
ground" flow field is thus a nonlinear disturbance (distortion) 
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whose calculation is itself a part of the overall computation 
procedure. 

In Ref. 1 the emphasis was in describing the method and 
presenting initial computations showing the type of results that 
could be obtained. That paper thus included only brief discussion 
of the structure of the disturbances, the question of the existence 
of a simple overall criterion for instability, the relation between 
the computational results and previous attempts to deal with 
this problem, such as the "parallel compressor" method, and 
the basic physical mechanisms that are associated with the 
observed behavior. 

The present paper covers these aspects as well as examines 
several phenomena which have not been previously discussed 
theoretically. The first of these is the coupling due to resonance 
between the propagating type of flow disturbances which 
characterize the compressor and the overall pulsations associated 
with the compression system. A necessary condition for this 
coupling is a nonuniform background flow. The second is 
another type of resonance that can exist between the inlet 
distortion and the disturbances in the compressor annulus, with 
the former acting as a forcing function for the latter. The general 
trend in both these situations is that the stable flow range is 
decreased, so that they are of interest from an engineering 
standpoint. Physical explanations are given for the observed 
behavior. 

The emphasis here is on the basic fluid phenomena, rather 
than extensive parametric studies. However, an examination is 
also made of the impact on the predictions of some of the 
different loss models that have been proposed for describing 
the unsteady processes within the compressor blade passages. 
This is useful for assessing the importance of this aspect of the 
modeling. 
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B r i e f  d e s c r i p t i o n  o f  t h e  m o d e l  

Because of the detailed description given in Ref. 1, only a brief 
review of the model will be presented here. A listing of the 
relevant assumptions and equations is given in the appendix. 
For calculations of the compressor performance, we assume a 
low speed compressor of sufficiently high hub-to-tip ratio that 
a two-dimensional treatment is valid. The pressure rise across 
any blade row in the compressor is taken to be made up of that 
achieved in steady uniform flow at the local entry conditions 
plus that necessary to balance the acceleration of the fluid within 
the blade row. 2 When the contributions from each blade row 
are added, this implies a pressure rise across the whole compressor 
of (at each value of 0), 

P2-Ptl d o #r ~O 
-~(O)-,~ (i) 

pU 2 630 U 63t 

In Equation 1, P2 and P,, are the static pressure at com- 
pressor exit and the total pressure at the compressor inlet; the 
parameters ,l and #, which are defined in the Appendix, 
represent the inertia of the fluid in the rotors and in all blade 
rows respectively; 0 is the local value of axial flow coefficient 
(0 = CJU); and ~b is the inlet total to exit static pressure rise 
characteristic under uniform flow conditions at the local value 
of 0. ~b is assumed to be a smooth continuous function of flow 
coefficient and, again, is the performance that would be 
obtained if the flow through the compressor were steady and 
axisymmetric, i.e., the blade element performance free from 
rotating stall. An examination of the form of ~ for a three-stage 
compressor has recently been made by Longley. 3"4 Unless 
otherwise specified, the particular form used for ¢ in the 
calculations presented herein is that shown in Figure 1, which 
is based on parameters from a low speed three-stage com- 
pressor: Its explicit form is given below. Equation 1, which 

expresses the local pressure rise across the compressor as a 
function of the local axial velocity, must be combined with a 
description of the upstream and downstream flow fields and of 
the overall system in which the compressor operates, as will be 
discussed below. 

The problem of assessing the effect of inlet distortion on the 
stability of the flow through the compressor is inherently a 
nonlinear one. A central concept in the present approach is 
that the strong nonlinearity of the compressor performance (~b, 
as a function of flow coefficient O) has the greatest importance,t 
so this is treated in a fully nonlinear manner. 

To solve Equation 1, the pressure terms must be related to 
0(0, t). This involves the calculation of the flow fields upstream 
and downstream of the compressor and is also a nonlinear 
problem. We regard the nonlinearities associated with the flow 
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field as much less important than those associated with the 
compressor performance, and the equations used upstream and 
downstream of the compressor are thus taken to be those for 
linear perturbations about a uniform flow. This approximation 
for treating the flow field has in fact been shown by several 
authors, e.g., Refs. 6 and 7, to be a good one in the present 
context. Further discussion of this approach and its justification 
can be found in Ref. 1; a different point of view is given in Ref. 8. 

Because the background flow is nonuniform, the unsteady 
flow field perturbations that we are considering (i.e., the 
eigenmodes of the system) do not have a purely sinusoidal 
distribution round the annulus. In addition, the instantaneous 
annulus averaged mass flow is not in general zero, as it would 
be, for example, for propagating disturbances on a uniform 
background flow. The latter implies that the global compression 
system behavior is coupled to the local compressor behavior, 
so that a description of the overall compression system, as well 
as the compressor flow field, must thus be included in the model. 

The compression system studied is modeled as a compressor 
pumping to a plenum, which exhausts through an ideal throttle. 
The length of the compressor ducting is taken as long enough 
so there are no nonaxisymmetric potential flow interactions 
with the inlet and exit duct terminations. This is not a limitation 
of the theory, but is adopted only to simplify the algebra. 
Density changes in the plenum are related to pressure changes 
through an isentropic relationship and the inertia of the fluid 
in the throttle is neglected. The nondimensional parameters 
which characterize the compressor and system dynamic behavior 
are t 

LTOT -- effective compressor length 
r / -  

r mean radius 

and 

B -  U /Vplenum 
A--  OT 

The axisymmetric compressor pressure rise characteristic, 
~'(0), must also be specified. Pressure rise here is defined 
from inlet total to exit static pressure, and the explicit 
shape of the curve used in the computations is taken as 
~/= - 5.76~b 3 + 4.32~b 2 + 0.3. This is consistent with data from a 
low speed, three-stage compressor, s and should be a reasonable 
generic representation. 

To complete the formulation of the problem, some way of 
specifying the inlet distortion must be added. In many practical 
situations, the flow through the compressor can influence the 
flow through the distortion generator. 1 This, however, is a 
complication of detail rather than of principle and we do not 
address it here. We thus assume that the total pressure 
distortion is specified as a function of 0 (and sometimes also t) 
at a location which is upstream of the asymmetric static pressure 
field ahead of the compressor. 

Calculation procedure for the background f low 

Once the inlet distortion is specified, a solution to Equation 1 
can be found. If the distortion is steady, Equation 1 reduces to 
a nonlinear ordinary differential equation for the background 
flOW, 

P2(O)-- Ptl (0) _ ~'[O(O)] -- 2 dO (2) 
p U  2 dO 

The linearized treatment of the upstream and downstream 
flow fields implies that Pt~(O) is the same as the specified far 
upstream total pressure distortion. For a steady distortion, a 

Compressor flow field instability: R. Chue et al. 

steady solution is demanded for the background flow. Another 
case, discussed later, is that of a rotating distortion; in this 
case, a background solution which rotates at the prescribed 
frequency is sought. 

There are various ways of obtaining the desired solution; we 
have elected to use a Fourier collocation (or pseudospectral) 
method, 9 which exploits the circumferential periodicity of the 
flow. The flow variables are thus represented as 

K-1 
O = ~ Ak(t)e ik° 

k= -K 

so that the steady-state equations are exactly satisfied at 2K + 1 
points around the annulus. The Fourier coefficients are solved 
for using a preconditioned Newton's iterative method to obtain 
an optimum convergence rate. Nonlinear terms are evaluated 
by direct multiplication of discretized functions in physical 
space while differentiation is done in the Fourier space. Which- 
ever way the computation is carried out, however, the important 
point is that a steady solution can be obtained for the 
background flow and that, as is general in hydrodynamic 
stability problems, it can be obtained whether or not such a 
flow would be stable in practice. 

Stability assessment 

The issue of stability is decided by a separate calculation. To 
the background flow is added an arbitrary small, unsteady 
perturbation. If any such perturbation grows with time, the 
flow through the compressor is adjudged unstable; only if all 
possible solutions decay with time is stability assured. Linear- 
ization about the flow field given by Equation 1 yields an 
equation for the perturbation quantities, denoted by J( ): 

Je2-~e ,~  _d~b t$O-,~ &sO pr t~t$~ (3) 
pU 2 dO ~0 U t~t 

The local value of the slope of the compressor characteristic, 
d~b/d0, will generally be a strong function of 0, and solutions of 
this equation can thus differ markedly from the purely sinusoidal 
solutions obtained in undistorted flow (where dC,/d0 is constant 
around the annulus). 

The small perturbation approach is a standard technique in 
stability theory and represents in effect an eigenmode and 
eigenvalue problem. In physical terms, the unsteady pertur- 
bations to the flow may be viewed as incipient stall cells when 
they propagate around the annulus and as small amplitude, 
surge-like system transients when they are predominantly 
one-dimensional in character. 

Structure of the disturbance mode 

To understand the overall behavior of the compressor/ 
compression system, it is useful first to examine the structure 
of the eigenmode at the onset of instability. The perturbations 
of flow quantities at the compressor face are of the form 

J( ) = ~  Ak ei(~°+~) (4) 
k 

with the value of to determined from the stability analysis. If 
to has a negative imaginary part, growth of the disturbance is 
implied and the flow is unstable. 

The components of the solution eigenvectors are the Fourier 
components, A~, for the spectral representation of the axial 
velocity perturbation, the plenum pressure, 6p, and the throttle 
mass flow perturbations, which correspond to that particular 
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eigenmode. The individual eigenmodes will generally have 
a rich harmonic content. The form of the eigenmodes is different 
when the compressor and the compression system are not 
strongly coupled compared to when a strong coupling exists, 
and we thus examine behavior in both cases, starting with 
the former situation. The distortion used is a square wave of 
120 ° extent; this is representative of distortion employed in 
compressor testing. 

The nomenclature to be followed is to call the single lobed 
disturbance the first eigenmode, the disturbance with two lobes 
the second eigenmode, the disturbance which has its zeroth 
Fourier component largest the zeroth mode, etc. One can 
(loosely) view the zeroth eigenmode as a surge-like disturbance 
and the others as different order propagating stall-like distur- 
bances. The coupling between different harmonic components 
in each eigenmode is strongest for the near neighbors, because 
the imposed distortion has as its strongest component the first 
harmonic. This is true for most distortions that are of practical 
interest in the present context, i.e., those which have a significant 
effect on the stall point. In addition, the eigenmode correspond- 
ing to the single lobe has been found to be most critical for 
instability and we will discuss this as typifying the general 
behavior to be found. 

Even though the nearest neighbor relationship remains as 
the parameters that characterize the system are varied, other 
aspects of the behavior do change considerably. One reason 
for this can be seen by considering the frequencies characterizing 
the different eigenmodes. The velocity of propagating disturb- 
ances essentially scales with the rotor speed and is not much 
affected by system (plenum volume, overall compressor length) 
parameters. The frequency of the surge-like type of disturbance, 
however, is not very dependent on rotor speed but is set by 
the system dimensions. 

As B is changed, the ratio of the two frequencies also changes 
and, for a particular value of B, the two will coincide as shown 
in Figure 2. In the figure, the frequencies of the surge-like and 
one-lobed propagating eigenmodes are plotted versus B. For 
the parameters listed, the two frequencies coincide at B = 0.34. 
In the figure, two sets of curves are shown: the solid curves are 
from computations with a large amplitude inlet distortion (the 
difference between high and low total pressure regions corre- 
sponds to roughly 1.5 times the dynamic pressure based on the 
mean velocity). The dashed curves show the frequencies for a 
situation with uniform inlet (no distortion), based on analyses 
for rotating stall and surge under uniform flow conditions. 2'1° 
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As shown by Longley, 3 even for this large distortion, there is 
little effect on the disturbance frequencies, and this property 
will be made use of in some of the physical arguments given 
below. 

In the neighborhood of frequency coincidence, the coupling 
between the zeroth and first Fourier components becomes 
stronger, as seen in Figure 3, which shows the ratio of the 
zeroth and first harmonic components of the first (propa- 
gating stall-like) eigenmode. Away from coincidence, the first 
harmonic dominates, but this is less true in the neighborhood 
of coincidence. 

The change in the structure of the eigenmodes is not the only 
phenomenon that occurs in the neighborhood of coincidence. A 
more direct effect is an alteration in the stability boundary. 
More specifically, when the frequencies approach one another, 
the flow in the compressor becomes unstable at a higher flow 
rate than when the two frequencies are far apart. This will be 
taken up in a subsequent section, where it will be shown that 
the stability is due to a resonance between propagating and 
system type frequencies. 

As a prelude to the general discussion that follows, it is of 
interest to look at the time domain representations of the 
eigenmodes. Figure 4 thus presents a plot of axial velocity 
perturbation, 6q~, versus circumferential angle, 0, at different 
times for a situation near this resonance, i.e., near the frequency 
coincidence. Two periods are shown in both 0 and time, so that 
the motion of the wave can be seen more clearly. The eigenmode 
shown is the most unstable one (the first), and the conditions 
are taken at the neutral stability point. The figure is normalized 
with respect to the maximum peak-to-peak axial velocity 
perturbation. As implied in Ref. 1, there is considerable 
variation of the wave shape as it propagates round the annulus 
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(this occurs both near the resonance and far from it). At 
resonance, there is also a strong fluctuation in annulus averaged 
mass flow which, for this case, is roughly 25% of the maximum 
perturbation in 64). 

With this discussion of the nature of the eigensolutions as 
background, we can now turn to some of the results concerning 
stability. We first examine the situation'away from resonance 
where a simple criterion for instability can be derived. 

C o m m e n t s  o n  a g e n e r a l  s t a b i l i t y  c r i t e r i o n  
f o r  d i s t o r t e d  f l o w  

In Ref. 1, it was suggested that the point of instability for a 
compressor in a steady, circumferentially distorted flow would 
occur when the area averaged value of the compressor charac- 
teristic slope or integrated mean slope (IMS) was zero, 

1 -I "2• dl//d0=0 (5) 

The integrand here is evaluated using the background steady 
distorted flow, given by solving Equation 2 along with the 
relevant boundary conditions. The suggestion was made based 
on the results of applying the perturbation stability analysis 
to a variety of different distortion/compression system combi- 
nations. Varied quantities included: compressor characteristic; 
shape, extent, and amplitude of the distortion; system dynamics 
parameters B and q; and blade row inertia parameters 2 and 
/~. Over a wide range of parameters, Equation 5 was found to 
hold at the instability onset operating point with surprising 
accuracy. 

A heuristic argument for the validity of Equation 5 can be 
based upon a simplified treatment of Equation 3. If we make 
the assumption that (as the numerical calculations show) the 
most important term in the expression for upstream and 
downstream pressure fluctuations is the first harmonic com- 
ponent, Equation 3 can be written in terms of the axial velocity 
perturbation, 6~, as 

0cS~b (d~k~ car 
#r ica6$ + 2 6q~ - 2i (6) 
F o o  - = 0 

The solution of Equation 6 has the general form 

3O =g(O)e i'~ 

where 

dO 2 \  U U 0 = 0  

The function g(0) is given by 

(lfod*do'- =o-2, o) g(0)=exp ~ d--~ 2 U 

Since 4) must be periodic as a function of 0, the argument of 
the exponential must take the value 2hiM for some integer M, 
and this condition determines the eigenvalue ca. At the neutral 
stability operating point, ca is purely real. Equation 5 thus 
follows. Solutions to Equation 6 can be written as 

e d~/ 
dO' +iM(o-2U/rt]] (7) 

This shows explicitly that the axial velocity perturbation has 
the form of a wave traveling round the annulus with amplitude 
exponentially increasing in regions where d~k/d~b is positive, 
and exponentially decaying in regions where d~,/d~b is negative. 
From this point of view, the situation can be regarded as a 
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balance between locally stable and unstable sectors of the 
annulus. 

Because the compressor characteristic slope, d0/d0, can vary 
markedly over different parts of the annulus, the growth and 
decay rates can be large in practical situations. As an example, 
Figure 5 shows the time mean (background) axial velocity and 
compressor characteristic slope, d$/dq~, for a square wave 
distortion of 120 ° extent. The operating condition is at neutral 
stability. Both ~k and d0/d 0 are essentially in quadrature with 
the total pressure distortion (the "spoiled sector"), because of 
the dominance of local unsteady effects at operating points near 
the peak of the compressor characteristic. 

The analysis given above provides a plausibility argument 
for the use of IMS equal to zero as a stability criterion, but it 
is stressed that it is the large body of more rigorous computa- 
tions which underpins our belief in its applicability. There are, 
however, a number of similarities between the perturbations 
computed using the full analysis and the approximate 
expression of Equation 7. The regions of the annulus where the 
calculated perturbation amplitude grows and where it decays 
correlate well with the sign of d~O/d~b. All traveling wave-type 
of disturbances appeared to become unstable together (as is the 
case in Equation 7). Finally, those cases where IMS =0  was 
found not to apply were cases where the validity of the 
heuristic argument might be questioned: these are discussed 
subsequently. 

A p p l i c a t i o n s  o f  t h e  i n t e g r a t e d  m e a n  s l o p e  
c r i t e r i o n  and  c o n n e c t i o n  w i t h  pa ra l l e l  
c o m p r e s s o r  t h e o r y  

The IMS = 0 criterion is, when valid, a very useful result, as one 
can compute the instability point in a simple manner. We can 
exploit this criterion to examine the importance of parameters 
such as 2 (compressor blade row inertia parameter)• We will 
deal with a mathematically simple situation and take the 
compressor characteristic to be a parabola. Other shapes 
can readily be dealt with at the expense of algebraic complexity 
but this is a useful approximation which has generic behavior 
near the peak. Thus: 

~ = ~ r n - a 2 ( O -  Om) z 
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The stability criterion I M S = 0  becomes f2. 
0 =  - 2a2(4~- q~.) dO 

o 

that is 

~=~., (8) 
For an inlet distortion of square wave type, as shown in 

Figure 7, the equation that determines the distribution of ~b 
round the annulus, Equation 1, becomes 

2 d~b = ~bm- RL--  a2(~b- 4~) 2 (9) 
dO 

In Equation 9, Rz is the overall pressure rise in the low total 
pressure (0 < 0- ) sector of the annulus. In the high total pressure 
sector (2n > 0 > 0- ), we have 

dq~ APt 2 2 
2 d--~ = ~bm- RL+ ~U-3- a (~b- ~bm) (10) 

Examination of the sign of dq~/d0 in the distorted sector implies, 
from Equation 9, that R L > ~b m. 

Equations 9 and 10 can be solved to obtain ~b as a function 
of 0: 

q~ = q ~ , - ( ! ) ( R z - ~ b . , )  '/2 tanf(~)(RL--tP=)x/2(O--O~-2) ] 

0 < 0 -  ( l la)  

and 

1 Apt 1/2 

a APt 1/2 0-  
× tanh [ (~) (q t , .  + ~ - - ~ - R z ) ( n -  0 + ~ - ) ]  

2 n > 0 > 0 -  ( l lb)  

The low total pressure sector pressure rise, Rz, at neutral 
stability is determined by the IMS = 0 condition that ~ =  q~m- 

From Equation l la ,  if ~ is to remain finite in the 0-  sector, 
[(a/2)(Rz-~0,.)~/2](0-/2) must not exceed n/2. This condition, 
and the condition that Rz > ~O,. mentioned previously, imply 

n 2 2 2  

~km<RL<¢m a t ' -  a2(O-) ~ 

As 2--* 0, i.e., as the compressor inertial parameter decreases, 
Rz--* ~b,,. At the limit, therefore, instability onset occurs when 
the pressure rise in the low inlet total pressure sector reaches the 
uniform flow instability onset point. This is precisely the criterion 
applied in early versions of the parallel compressor model. 

Examination of Equations 11 indicates that 2 only occurs in 
the combination ,~/a. For given 2, when the characteristics have 
high curvature near their peak pressure rise, the predictions of 
the model will approach those of the parallel compressor model. 
An example calculation of loss of stability margin, defined in 
terms of pressure rise at constant speed, is shown in Figure 6 
(the conditions are described in the figure caption) and it 
appears that the simple parallel compressor always overestimates 
the loss in stability margin. 

The corresponding axial velocity profiles at the neutral 
stability case are shown for a 180 ° square wave in Figure 7 for 
different values of 2/a. The I M S = 0  criterion implies that 
comparable amounts of the annulus must be at negative d~b/d0 
(4)> ~bm), i.e., at conditions corresponding to locally stable 
operation as are at positive d~/d~ (q~ < ~=,) corresponding to 
locally unstable conditions. The most interesting aspect of 
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Figure 7 is the manner in which the value 2/a determines the 
way this balance is achieved. The (locally) least stable part of 
the annulus is not in phase with the low inlet total pressure 
(spoiled) sector and, indeed, in the limit 2/a--* O, the high inlet 
total pressure (unspoiled) sector operates at two points on the 
axisymmetric characteristic. 

The analysis given in this section shows clearly the connection 
between the present unsteady model and the results given by 
the quasi-steady simple parallel compressor model, as well as 
illustrating trends that are seen in practice for effect on stability. 
This, plus the ideas expressed in the previous section concerning 
the growth and decay of waves in the annulus, portray, we 
think, the essential fluid mechanic features determining the 
stability of compressors operating with inlet circumferential 
distortion. It is to be stressed, however, that the ideas only 
apply when the I M S = 0  criterion holds, and we must now 
examine the conditions under which this criterion must be 
moditied. 

216 Int. J. Heat and Fluid Flow, Vol. 10, No. 3, September 1989 



Behavior near compressor and compression 
system frequency coincidence 

One condition where the IMS = 0 criterion is not valid occurs 
when the frequency of propagating modes and system type 
modes coincide. Note that the system frequency referred to here 
is the Helmholtz frequency, rather than the small amplitude 
surge frequency, although for practical purposes there is very 
little difference between them. As was seen in Figure 3, the 
propagating eigenmode will have a strong zeroth harmonic 
component, A o. More importantly from an application s point 
of view, instability occurs at a higher flow rate than would be 
predicted by the I M S = 0  criterion. 

A typical magnitude of the effect is shown in the two curves 
in Figure 8, which give the throttle coefficient, K ,  at instability. 
One curve shows throttle coefficient at stall versus the ratio of 
system frequency to frequency of the propagating mode distur- 
bance, as B is varied, keeping the compressor nondimensional 
length, th constant. The second shows a corresponding plot for 
constant B but varying ~/. For reference, a 10% drop in throttle 
coefficient corresponds to roughly a 5% increase in flow. Figure 
9 shows how the average compressor slope at instability moves 
towards the negatively sloped portion of the compressor 
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characteristic, away from the I M S = 0  value as frequency 
coincidence occurs. An analytic calculation procedure for this 
shift in stability has recently been developed by Longley) 

Physical mechanism for instabil i ty 
at f requency coincidence 

The result that there is a marked change in the instability point 
when the "system type" frequencies associated and the fre- 
quencies of the propagating type of disturbances approach one 
another is new, and we will spend some time describing the 
physical mechanism associated with it. The situation can be 
viewed as one in which the traveling wave (compressor type) 
perturbations create fluctuating forces which drive the system 
type of perturbations. This coupling of the compressor and 
compression system type perturbations, can occur only if there 
is a nonuniform flow in the compressor. 

Consider the situation at neutral stability when compressor 
and compression system frequencies are near coincidence. The 
instability is due to a net mechanical energy flux out of the 
compressor, which is fed into the flow field perturbations. A 
useful simple indicator of this net mechanical energy flux is the 
product of the local variation in total-to-static pressure rise 
(dC,/d~)~ times the local axial velocity &~b. Although this does 
not correspond exactly to the net energy flux, it is closely linked 
to it and, more importantly, the value of (dC,/d~b)(&b) 2 gives 
indication of the regions in which instability is to be expected. 

Time moan circumferential variations and the disturbance 
eigenmode structure are given in Figure 10. Figures 10(a) and 
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10(b) show the time mean axial velocity distribution and the 
slope of the axisymmetric compressor characteristic, d~/d~b, as 
a function of 0. The location of the far upstream distortion in 
total pressure (spoiled sector) is also indicated. The annulus 
averaged slope is clearly negative at this operating point. 

Figure 10(c) shows the net (averaged over a period 2~z/~o) 
value of (d~/d~b)(6t~) 2. Although the average slope of the 
compressor characteristic is negative, there is a net positive 
energy flux. For this to occur, the magnitude of the axial velocity 
perturbations must be considerably larger in the region of 
positive slope (roughly 0 = ~ to 0 = 2n) than in the region of 
negative slope. The square of the axial velocity perturbations 
shown in Figure 10(d) bears this out. 

To understand why this occurs, let us, for the moment, 
represent the disturbance eigenmodes by zeroth and first 
harmonic components only. Computations using this 
representation show much the same behavior as the full 
representation (i.e., decreased stability in the neighborhood of 
the coincidence point), so such a description is very useful as 
a model of the more complex situation described by the full 
calculation. A sketch showing the relationships of these two 
components is given in Figure 11, which portrays different times 
during a cycle. The circumferential position has the same 
reference as that in Figure 10. 

When the traveling wave part of the eigenmode is in phase 
with the time mean velocity profile, and thus out of phase with 
the slope of the axisymmetric compressor characteristic, as in 
the (Time 1) top plot in Figure 11, the planar component of 
the eigenmode has a negative velocity associated with it. When 
the traveling wave is out of phase with the time mean velocity 
(Time 3 plot), the planar component gives a positive velocity. 

The effect of these phase relationships is indicated on a 
compressor characteristic in Figure 12. Unsteady velocity 
perturbations are shown for the high flow (roughly 0 < 0 < n )  
and low flow (roughly ~ < 0 < 2n) regions: the nomenclature 1, 
2, 3, 4 refers to the situation at the times in Figure 11. The 
larger filled symbols refer to a representative time mean 
operating point in each region, i.e., representative points on 
the positive and negative slopes. 

At Time 1, the excursion in the low flow (positive slope) 
region will be larger than that in the high flow region, since 
both harmonic components of the eigenmode contribute a 
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negative velocity in the former. In the high flow region, the 
traveling wave part of the velocity is positive while the planar 
part is negative so the net excursion is less. 

At Time 2 and Time 4 the perturbation is near zero, but at 
Time 3 there is again addition of velocities from the different 
harmonic components in the low flow region and partial 
cancellation in the high flow region. The phase relationships 
of the compressor perturbations (the traveling disturbances) 
and the system pulsations thus cause the velocity fluctuations 
in the positive sloped region to be much larger than those in 
the negatively sloped region. 

The foregoing kinematical description shows that two cir- 
cumstances must occur for decreased stability (compared to 
IMS=0)  due to compressor/compression system complexity: 
the magnitude of the zeroth component must be a significant 
fraction of the first component, and the phase of the two 
components must have a relationship similar to that in Figure 
11. To determine when this occurs, we examine the dynamics 
of the compression system. 

The perturbations in annulus averaged compressor pressure 
rise are due mainly to the traveling wave component of the 
velocity disturbance. With reference to Figures 10 and 11, at 
Time 1, both the high flow and low flow sides have a lower 
pressure rise than the time mean (the flow on the low side is 
lower and the flow on the high side is higher; both situations 
lead to a decrease in the pressure rise). Conversely, at Time 3, 
the pressure rise is higher than the mean. At 2 and 4, the 
pressure rise perturbation will be close to zero. The pressure 
perturbations due to the zeroth harmonic component are much 
smaller because the annulus average is close to the peak, and 
the amplitude of the zeroth harmonic is smaller than that of 
the first harmonic. Because of this, we can consider as a good 
approximation only traveling wave disturbances when describing 
the instantaneous annulus averaged pressure rise. This latter 
quantity, which is essentially the axial force, will be of the form 
tSF = Foe ' "  and will have its largest positive value near Time 3 
and its largest negative value near Time 1. 

The response of a compression system composed of a 
compressor, plenum, and throttle to such perturbations can be 
expressed in terms of a transfer function, annulus averaged mass 
flow fluctuation/compressor pressure rise 

5rh c 1 + i(og/oga)B~" 

fiF 1 - -  ((D/O)H) 2 "~ (i/BT")(Og/~n) (t2) 
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where to is the frequency of the traveling wave perturbation, 
cos is the overall Helmholtz system frequency, and 7'' is the 
slope of the throttle characteristic. 

Equation 12 shows that the normalized compressor mass  
flow fluctuation will be maximized very near the point where the 
traveling wave frequency equals the Helmholtz frequency, i.e., 
very near the condition t,/o~, = 1. Although this is not neces- 
sarily the same condition as that for the largest decrease in 
stability, it is to be expected that there is a close link between 
the two. Examination of the transfer function, as well as 
(Ao/AI), the ratio of annulus averaged mass flow fluctuation 
(zeroth harmonic component) to the first harmonic, based on 
the full calculation, shows the following trends concerning phase 
and amplitude. The largest amplitude of the zeroth harmonic 
occurs at a situation in the neighborhood of frequency coin- 
cidence. For values of B larger than that corresponding to 
coincidence, the phase of the zeroth and first harmonics is near 
90 °, and the mechanism described with reference to Figures 11 
and 12 will not be important. For values of B lower than 
coincidence, the amplitude of the zeroth harmonic decreases 
drastically. Thus, only in the neighborhood of coincidence 
where the system is essentially being driven at resonance are 
the proper conditions met for instability to occur on the 
negatively sloped part of the curve. 

To recap, what has been said, and what can be seen explicitly 
from the form of the transfer function, the interaction between 
compressor type traveling wave perturbations and the flow field 
nonuniformity can be regarded as a forcing term for the 
compression system. The response of the latter is greatest at 
conditions of resonance, and this is where the largest effect on 
stability is seen. The coupling involved in the forcing depends 
critically on the presence of a time mean circumferential 
distortion, and does not occur in a uniform flow. 

R o t a t i n g  i n l e t  d i s t o r t i o n s  

Another instance in which the IMS = 0 criterion does not hold 
is for rotating distortions. There has recently been interest in 
this type of distortion, which propagate (rotate) at some fraction 
of rotor speed. One situation where this occurs is in high 
pressure compressors in two (or three) spool engines subjected 
to the distortion created by a rotating stall in the low pressure 
compressor. 11 Rotating distortions can be regarded as one 
example of the general class of dynamic distortions, with which 
the present analysis is capable of dealing. 

Detailed experimental evidence is somewhat sparse, but one 
of the striking results that has been seen with rotating distortions 
is the strong decrease in stability if the rotation speed becomes 
close to the stall cell propagation speed. This was observed in 
Ref. 12 where an analogy with resonant behavior of a simple 
system was drawn, as well as in the experiments described in 
Ref. 13. 

To examine this phenomenon, calculations have been carried 
out with inlet distortions rotating at various fractions of rotor 
speed, f ,  from f =  - 0 . 6  (against rotor rotation) to f =  0.6 (with 
rotor rotation). The background flow upstream and downstream 
of the compressor is taken to be steady in a frame that rotates 
at the distortion frequency. The equation expressing the corn- 
pressure rise, Equation 1, is then 

P2 - - P , ,  _ ~ ( ~ ) _  (g - - / z f )  - -  (13)  
p U  2 t~O 

There are two important differences between Equation 13 
and Equation 2 which was for steady distortion. Because the 
flow ahead of the compressor is unsteady, Pt, is no longer 
simply the upstream distorted value. Chafiges in Pt, will now 
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arise as the result of the unsteady flow and these must emerge 
from a calculation of the compressor entry flow field. It should 
be noted that it is only the irrotational part of the upstream 
velocity field that gives rise to these (nonconvected) tota l  
pressure perturbations which, to the order of approximation 
adopted, obey Laplace's equation. Second, the flow downstream 
of the compressor is unsteady and P2 must reflect this fact. 

The solutions of Equation 13 for the background flow axial 
velocity distribution are shown in Figure 13 for a range of 
distortion rotation rates, f (=mdi,to, io,r/U ). The distortion is 
a square wave of amplitude APJpU 2 =0.2 and extent 120 °. All 
calculations represent conditions at the neutral stability point 
corresponding to that particular rotation rate. The calculations 
have been done for a constant far upstream total pressure 
distortion as measured in the frame of reference fixed to the 
distortion. The solid lines denote conditions for a very low 
value of B (0.01) far from any compressor/compression system 
frequency coincidence. The dotted line shows the behavior for 
f = 0 . 3  and a larger value of B=I .0 ;  this will be described 
subsequently. 

There are large differences between the curves, and some of 
the reason for this can be seen from Equation 13. The coefficient 
of a~b/c~0 in Equation 13 changes as f is varied. When 
f = - 0 . 6 ,  it is more than double the value for f = 0 .  This 
amounts to an effective increase of the inertia parameter which 
shows directly in the reduced distortion in axial velocity. When 
f =  0.6, the coefficient of d0/d0 has opposite sigr to the steady 
value. Very loosely, this is analogous to chan~,ing the sign of 
c~b/~0, and the form of the ~b curve thus roughly mirrors 
image of the steady ( f = 0 )  value. 

One cannot focus attention solely on the coefficient A-#f ,  
however, since the pressure terms in Equation 13 are also 
important. A complete analysis shows that the relevant term 
is of the form g - ( g  + 2/Ikl)f; this indicates increased sensitivity 
when the distortion rotation rate is near stall propagation rate. 
(Note that the extent of the increased sensitivity will also depend 
on the shape of the compressor characteristic, through the 
parameter g/a). The axial velocity profiles at the compressor 
inlet for values o f f = 0  and 0.3, also shown in Figure 13, bear 
this out. At a value of f=0 .3 ,  close to the stall cell speed, the 
velocity profile has a large amplitude. At this condition, the 
inlet distortion is forcing the compressor at frequencies that are 
close to those of the natural eigenmodes (the frequency of stall 
cell propagation), so that a larger response might be expected. 

This is also seen in the overall compressor pressure rise 
characteristics plotted in Figure 14. The axisymmetric curve is 

Int. J. Heat and Fluid Flow, Vol. 10, No. 3, September 1989 219 



Compressor flow field instability: R. Chue et al. 

0.8 

0.6 

0E 
(1) 

~- 0.4 
0-  

Q.  

E 
o 0.2 O 

0.0 

f=-0.6 
, ~ ~ ~  f=o.0 

f=0.6 ~ ~ ,  

f = o . 2 f ~  

Compresso! \ 
axisymmetric \ 
characteristic. \ 

Vc \ 

I I I I I 

0.3 0 .4  0.5 0.6 0.7 0.S 

Mean Flow Coefficient. 

Figure 14 Effect of distortion rotation rate, f (=cod~=o,=o.r/U) on 
overall compressor performance; r/=6, 2=1, /~=2, 120 ° extent 
distortion, APJpU==O.2. Solid circles show neutral stability points 
for B = 0.01, solid square indicates neutral stability point for B = 1.0 

shown as well as distorted flow characteristics for the same 
rotation speeds as in Figure 13. The distorted flow character- 
istics are plotted up to the neutral stability point, i.e., the curves 
terminate at instability. Because an actual distortion would 
scale roughly as ~b 2 and the calculations have been done 
with a constant value of APJpU 2, the figure underestimates 
somewhat the degree to which the performance at higher flows 
is degraded at distortion rotation rates which are near the 
natural stall cell speed. As distortion rotation rate is increased 
from zero to 0.3, the figure shows a drop in the compressor 
performance (due to the increase in axial velocity nonuniformity) 
and a shift in the stall point. In particular, for f =  0.3, there is 
only a small regime in which the flow is stable. 

In common with the case of steady distortion, the parts of 
the annulus which are most likely to promote unstable pertur- 
bations, i.e., the low flow regions, are to be found outside the 
sector having low inlet total pressure. Attempts to investigate 
what determines the stall point must thus model the fluid 
dynamic coupling of the spoiled and unspoiled sectors, and an 
approach based only on total pressure patterns and any type 
of "critical residence time" is not adequate to do this. 

Compressor/compression system coupling 
with rotating distortions 

The compressor/compression system coupling and the decrease 
in stability due to rotating distortion have been presented so 
far as separate phenomena, but the two can also interact with 
one another. The combination of an imposed rotating distortion 
plus the naturally propagating disturbance creates annulus 
averaged perturbations at a frequency set by the difference of 
the rotation rates of the former and the latter. This difference 
frequency can also come into coincidence (resonance) with the 
system modes. 

For  the compressor and system that has been discussed, 
we found that, for a stationary distortion, coincidence is 
computed to occur near B=0.35. Thus, consider the behavior 
at a value of B far from this, say B = 1, as the rotation rate of 
the distortion is increased from initially zero. As the distortion 

rotation rate increases, the difference between distortion rotation 
and stall propagation frequencies will decrease and approach 
the system frequency. The result will be a tendency towards 
decreased stability. For  the present situation, the magnitude of 
the effect is illustrated by the shift in instability point from the 
solid circle (for B=0.01) to the solid square (for B =  1.0) in 
Figure 14. 

There is, of course, a general trend towards decreased system 
stability as B is increased, and it is difficult to disentangle this 
from the effect of coincidence. The main point is clear, however 
- -mos t  of the positively sloped portion of the distorted flow 
compressor characteristic can be unstable for moderate (or 
larger) values of B, and stable flow range and performance with 
rotating distortion can be severely affected. 

As a final note on this aspect, we can compare the axial 
velocity distribution at the neutral stability point for the 
rotating distortion, f=0 .3 ,  for the two values of B, 0.01 and 
1.0. The latter is given by the dashed line in Figure 13. At the 
lower value there is little coupling with the system and the 
strong response of the compressor to the rotating distortion is 
seen. In this case, instability can be regarded as due to the flow 
local to the compressor. At the higher value, the interaction 
with the system causes instability at a much higher flow rate, 
and the region of strong distortion/compressor eigenmode 
resonance cannot be accessed. 

Effect of loss modeling on stability prediction 

In analyzing the effects of inlet distortion, there have been a 
number of approaches to modeling the unsteady blade response 
which is an important part of the problem. All of these, at least 
for multistage compressor models, are quite rudimentary when 
compared to the actual situation. As part of the present 
investigation, we thus examine the impact of the choice of model 
on predictions of the analysis. 

In the preceding sections, the losses and exit angles were 
assumed to follow blade row inlet flow variations quasi-steadily, 
so that the unsteady effects included only an inertia term. In 
this section, we relax this assumption and let the instantaneous 
loss across a blade row lag the incidence changes, as determined 
by 

~Lr dL = L s s _ L  (14) 
U dt 

where L is a loss coefficient, and Lss is the steady state value 
of the loss coefficient at the instantaneous flow condition. The 
nondimensional time constant, zL, has been shown to have a 
value approximately equivalent to the time necessary for a 
particle to convect through a blade row, '4 so that 

~L ~bxU 20.1-0.3 
Cxr 

for typical compressor parameters. 
If the distortion is steady, the equation replacing Equation 2 

which describes the steady background flow becomes 

P2 -- Pt, d~ 
~blD -- Ls -- LR -- 2 - -  (15 ) 

pU 2 dO 

where ~k,D is an "ideal" pressure rise characteristic, based on 
actual flow angles and zero loss. ~b,D and the stator loss, L s, 
are functions of q~ only. The term L R represents the sum of the 
losses through the rotors and is found from the solution of 

~r -d~--0 = L%s -- L~ (16) 

assuming similar rotors for each stage. 
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For small values of the left-hand side (recall zL ~ 0.1-0.3), to 
first order we can write 

. /dL,ss'~ [dob'~ 

Substituting Equation 17 into Equation 15, we obtain an 
equation analogous to Equation 2: 

d4, 
P 2  - -  P "  = i / / ( ~ b ) -  2¢ f r  - -  (18) 

pU 2 dO 

where ~bm, L s and LRss have been regrouped to form $ and 

2=rf = 2 -  {L dLRss (19) 
d¢ 

Equation 19 can be regarded as defining an effective 2; the 
utility of this is discussed just below. 

To illustrate the effect of the unsteady losses, Figure 15 shows 
the axial velocity profiles at neutral stability for a 180 ° square 
wave distortion. Three curves are shown calculated using: (a) 
the simple inertia unsteadiness model (as in the preceding 
sections), (b) the unsteady loss model, and (c) the inertia model 
with an appropriate value of 2dr. It can be seen that, at least 
as far as the steady axial velocity profile is concerned, extending 
the blade row model to include unsteady losses is closely 
equivalent to increasing the value of 2. 

Given the similarity between axial velocity profiles, it is not 
surprising that the calculated stability onset point found for 
the unsteady loss model and the effective 2 model are similar. 
There is, however, a significant difference in the modes that are 
predicted to become unstable. The inclusion of an unsteady 
loss model means that, near stall, the instantaneous slope of 
the compressor characteristic is less positive than with quasi- 
steady losses. This effect increases as the degree of unsteadiness 
increases. This can be seen qualitatively by reference to Equation 
14. For small harmonic disturbances, this becomes for rotors 

6 L -  6Lss 
1 + izL(ogr/U + n) 

which decreases with increasing harmonic number n. 
The harmonic-dependent decrease in loss variation will 

separate the points of instability of the eigenmodes, and this 
would not be predicted just from increasing the effective 2. 
Figure 16 shows a quantitative illustration of the dependence 
on harmonic number. The first eigenmode becomes unstable 
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first, followed by the second, etc. Over a representative range 
of parameters, however, the condition at which the first mode 
becomes unstable is quite close to that computed using quasi- 
steady losses. Inclusion of unsteady losses does not, therefore, 
have a major effect on predicted stall point. The main effect is 
that higher order modes are now predicted to be more stable 
so that the first mode is the one that is of most import. 

S u m m a r y  a n d  c o n c l u s i o n s  

(1) A fluid dynamic stability analysis has been used to 
examine several phenomena associated with inlet distortion in 
multistage axial compressors. 

(2) The regimes of validity of the approximate distorted flow 
instability criterion 

TM d_, d0=0 
de 

have been examined. It is shown that this is valid except near 
coincidence of surge (system) type frequencies and compressor 
(stall cell) type propagating frequencies or where the distortion 
is rotating at a rate near the natural frequency of a compressor 
propagating eigenmode. Further, the use of this criterion allows 
one to show clearly that the basic parallel compressor stability 
criterion is recovered as a limiting case of the present analysis. 

(3) A rotating disturbance, whose propagation speed is close 
to that of the natural eigenmodes of the compressor, can cause 
rotating stall at a considerably higher flow rate than a distur- 
bance that rotates with speed far from the natural value. 
This is in agreement with (the sparse) experimental results. In 
general, counterrotating disturbances are less adverse than 
corotating disturbances. 

(4) In the neighborhood of coincidence between system 
(surge-like) frequencies and compressor (propagating stall-like) 
frequencies, there is also a decrease in stability compared to 
regimes where these frequencies are quite different. This is due 
to resonance between system and compressor perturbations, 
and only occurs if there is a nonuniform flow in the compressor. 

(5) The inclusion of pitch average models of unsteady losses 
in a computation of steady-state distorted flow has an effect 
very similar to that of an increase in the inertial unsteady terms, 
and thus appears not to introduce any new fluid mechanic 
effects. 
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(6) The simple inertia lag model does not distinguish a most 
unstable disturbance except near resonance conditions. Inclusion 
of unsteady losses, however, does separate the stability points 
of the different modes, with the result that the first (propagating) 
mode is the most unstable, and hence most important to 
consider. 
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Appendix: Description of compressor 
and f low field modeling 

Compressor performance 
The basic equation describing compressor performance, 

Equation 1, is derived under the following assumptions. The 
(low speed) compressor is taken to be of sufficiently high 
hub-to-tip ratio that a two-dimensional description of flow 
through it can be used. Provided all flow disturbances of interest 
have a circumferential wavelength much greater than a blade 
pitch, one can sensibly define a local value of incidence onto 
a blade row at each circumferential location. It is assumed that, 
at each 0, a blade row performs as it would in uniform flow at 
the local value of incidence (i.e., it produces the same pressure 
rise, loss, turning, etc.) apart from an additive, unsteady 
correction to account for the inertia of the fluid in the blade row. 

If all the unsteady pressure rise across a blade row is balanced 
by local inertia effects, then 

APIuNs=- (A,) 
cos ~, \ ~3t/r=l 

In this equation, b is the blade chord, 7 is the stagger angle, 
and W is the relative velocity. The time rate of change is taken 
in a coordinate system fixed to the particular blade row of 
interest. Thus, for a rotor, we have 

pb APltJNs= - ( e W + U  (A2) 
c o s y \ S t  r t~O 

in the absolute system. 
Ifcrossflow in the small gaps between blade rows is neglected, 

conservation of mass implies that axial velocity is continuous 
at each 0 across a blade row (and in fact across the whole 
compressor) so that 

w ~, 
- ( A 3 )  

U cos 7 

where ~b is the inlet (and exit) flow coefficient (?p=CffU) at 
that 0. Each blade row is assumed to have a turning which 
depends only on the local, instantaneous value of incidence, 
so the incidence that each blade row sees (apart from the first) 
will be a function only of q~ at that particular value of 0. 

Under these conditions, the local static pressure rise across 
the ith stage is 

( t 3 q ~ U g ~ ) O q ~  (A4) AP _ Fi(~))_ rR, -- Zs, 
pv, ~ ~ - + 7 ~  

where z = b/cos 2 y, the subscripts R and S refer to rotor and 
stator, respectively, and F~ is the pressure rise in axisymmetric 
flow at the local value of q~. The compressor is taken as having 
a row of inlet guide vanes, so that Equation A4 is valid for 
each stage of the compressor. 

The inlet guide vanes themselves must be treated slightly 
differently since it is no longer true that local values of incidence 
are a function only of local values of flow coefficient in an 
asymmetric flow. We assume instead that the flow through the 
IGVs consists of loss-free turning at the leading edge and then 
unsteady blade channel flow. A similar expression to Equation 
A1 results for the pressure rise, but involving the total pressure 
at inlet, 

Pout p "i'2U = Fmv(~b)--Zmv - -  (A5) 
pU 2 63t 

The performance for the compressor as a whole is then 
obtained by adding Equation A4 for each stage to Equation 
A5, to obtain 

P 2 - P t l  =~k(q~)--2 c3~ #r c3q~ (A6) 
pU 2 g30 U t3t 

where ~b =y. F i+  Flov is the undistorted compressor perfor- 
mance characteristic. The parameters 2 and p represent the 
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inertia of the fluid in the rotor and stator passages and are 
given by 

N U 
= ~ TR,- (A7) 

/ = 1  r 

and 

# = (~x, + ~s,) + qov - -  (A8) 
i r 

Equation A6 is Equation 1. It applies throughout the paper 
except for the next-to-last section, which examines the effect of 
relaxing some of the assumptions concerning the unsteady flow 
in the blade row. 

Flow fields external to the compressor 

Equation A6 can only be solved if some way of relating P2 
and Pt, to ~b is added. The required relationships are found by 
considering the dynamics of the upstream and downstream flow 
fields. It is argued that a simplified description of these is 
adequate and, in particular, that the flow external to the 
compressor can be described by a two-dimensional, inviscid set 
of equations linearized about a uniform flow. The details of 
how this is done differ slightly accordingly to whether the inlet 
distortion is steady or unsteady, and what follows is a description 
applicable to the steady distortion case. 

Upstream of the compressor, the flow field linearization 
implies, for the steady, distorted background flow, that the 
upstream reaction of the compressor is a potential flow. The 
total pressure distribution is thus the same function of 0 at the 
compressor face as it is at upstream infinity. (For the unsteady 
perturbation, used to determine the stability of the background 
flow, the flow field linearization assumption implies again that 
the desired relationship between 6P,  and 6~b required by 
Equation 3 is that applicable to an unsteady potential flow.) 

Compressor flow field instability: R. Chue et al. 

Downstream of the compressor, it is assumed that the 
compressor discharges axially into an annular duct which is 
several mean radii long, and then into a plenum before 
throttling. The axial momentum and continuity equations for 
this region are: 

l O P '  ~ C :  = aC'x 
p ~x t~t ÷ Cx ~xx (A9) 

and 

ac;, +1 ac~= ° (M0) 
t~x r dO 

At compressor exit, if the compressor is sufficiently heavily 
bladed, C~=0, and hence aC's/~O=O there. The continuity 
equation A10 then implies that at compressor exit ~CjOx = O, 
so that Equation A9 reduces to 

/9 C3X ~ t  ~lat compressor  exit 

The axial velocity perturbation at the compressor C',JU, can 
be written quite generally as 

C ~  x = akeikO + ~ot 

U -oo 

The downstream static pressure variations are irrotational 
(satisfying V2P'=0) so that P' must be of the form 

P' - (  ~ ot eik°-Iilx/" +;t x+ a "~e i~ (A12) 
.... . . 2 - - |  / ,  k 0 -  P O I  
ptJ \ . , o  r / 

The assumption that the exit ducting is several radii long 
ensures that only the decaying exponentials need be included 
in Equation A12. The boundary condition Al l  determines the 
a. in terms of the a. and so provides the required relationship 
between static pressure variations downstream of the compressor 
and local axial velocity variations. 
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